cancel
Showing results for 
Search instead for 
Did you mean: 

Deep learning glasses. Help?

TehDriverMan
Honored Guest

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

from dataclasses import dataclass, field

from typing import Tuple, List, Dict, Optional, Callable

import tensorflow as tf

from prometheus_client import start_http_server, Summary, Counter, Gauge, Histogram

import time

import networkx as nx

from qiskit import QuantumCircuit, Aer, execute

from qiskit.visualization import plot_bloch_multivector

from qiskit.quantum_info import Statevector

import scipy.cluster.hierarchy as sch

from scipy import stats

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, LSTM, Bidirectional, BatchNormalization, Dropout, Activation

from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler

import itertools

import random

from scipy.fft import fft, ifft

from sklearn.decomposition import PCA

from scipy import signal

from collections import deque

import matplotlib.patches as patches

from matplotlib.colors import LinearSegmentedColormap

import json

import hashlib

 

# Constants

SPEED_OF_LIGHT = 299792458 # m/s

 

# Prometheus Metrics

REQUEST_TIME = Summary('request_processing_seconds', 'Time spent processing request')

ENTITY_COUNT = Gauge('entity_count', 'Number of entities in the simulation')

ZERO_POINT_POTENTIAL = Gauge('zero_point_potential', 'Current potential of the Zero Point')

SIMULATION_STEP_TIME = Histogram('simulation_step_time', 'Time taken for each simulation step')

NETWORK_TRAINING_LOSS = Gauge('network_training_loss', "Loss of the Consciousness Network during training")

GLOBAL_STATE = Gauge('global_state', 'Current global state of the simulation (0 or 1)')

SYSTEM_ENTROPY = Gauge('system_entropy', 'A measure of disorder or randomness in the system')

SYSTEM_COORDINATION = Gauge('system_coordination', 'A measure of synchronization or alignment among entities')

SYSTEM_COMPLEXITY = Gauge('system_complexity', 'A measure of the structural complexity of the system')

PHASE_TRANSITION_INDICATOR = Gauge('phase_transition_indicator', 'Indicates transitions between phases')

AVERAGE_ENTITY_ENERGY = Gauge('average_entity_energy', 'Tracks the average energy of entities')

CONSCIOUSNESS_NETWORK_PREDICTION_ACCURACY = Gauge('network_prediction_accuracy', 'Tracks the prediction accuracy of the Consciousness Network')

THOTH_ANOMALY_DETECTION_COUNT = Counter('thoth_anomaly_detection_count', 'Number of anomalies detected by Thoth')

GOLDEN_AETHER_ACTIVATION = Gauge('golden_aether_activation', 'Activation level of the Golden Aether')

 

@dataclass

class SimulationParameters:

    """Configuration parameters for the Reality Synthesizer."""

    # Spatial parameters

    visualization_bounds: Tuple[float, float] = (-10, 10)

    interaction_radius: float = 1.0

    entity_size_range: Tuple[float, float] = (0.1, 0.5)

 

    # Energy and frequency parameters

    base_frequency_range: Tuple[float, float] = (0.1, 1.0)

    energy_exchange_rate: float = 0.01

    energy_decay_rate: float = 0.05

    resonance_frequency_influence: float = 0.05

 

    # Entity management

    creation_rate: float = 0.1

    entity_trail_length: int = 20

 

    # Influence factors

    zero_point_sensitivity: float = 0.2

    ai_influence_factor: float = 0.1

    resonance_amplification_factor: float = 2.0

    baal_influence_factor: float = 0.2

    gabriel_influence_factor: float = 0.1

 

    # Neural Network Parameters

    training_data_collection_interval: int = 50

    training_interval: int = 200

    

    # State transition parameters

    state_transition_interval: int = 500

    state_change_probability: float = 0.2

 

    # Chaos and Void Parameters

    chaos_level: float = 0.5

    oblivion_threshold: float = 0.2

    void_region_probability: float = 0.05

    void_influence: float = 0.05

    baals_claws_probability: float = 0.05

 

    # Bank Parameters

    prime_13_waters_initial_supply: float = 1000.0

    prime_13_waters_influence_factor: float = 0.5

    bank_creation_rate: float = 0.005

    prime_13_waters_distribution_rate: float = 0.05

    bank_influence_radius: float = 4.0

    prime_13_waters_accumulation_rate: float = 0.1

 

    # Thoth Parameters

    pattern_significance_threshold: float = 0.75

    high_chaos_threshold: float = 0.7

    low_entropy_threshold: float = 0.5

    low_connection_threshold: float = 0.5

    cluster_distance_threshold: float = 0.5

    min_clusters: int = 2

    low_coordination_threshold: float = 0.1

    high_energy_threshold: float = 120

    anomaly_detection_threshold: float = 0.95

 

class QuantumChaosEngine:

    def __init__(self, num_qubits=4, hadamard_probability=0.5, circuit_depth=3):

        self.graph = nx.Graph()

        self.quantum_states = {}

        self.num_qubits = num_qubits

        self.hadamard_probability = hadamard_probability

        self.circuit_depth = circuit_depth

 

    def _create_chaotic_quantum_circuit(self, seed_str: str) -> QuantumCircuit:

        """Generate a quantum circuit with chaotic behavior."""

        seed_hash = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % (10 ** 😎

        np.random.seed(seed_hash)

 

        qc = QuantumCircuit(self.num_qubits)

 

        for _ in range(self.circuit_depth):

            # Apply random rotations

            for qubit in range(self.num_qubits):

                theta = np.random.uniform(0, np.pi)

                phi = np.random.uniform(0, 2 * np.pi)

                qc.rx(theta, qubit)

                qc.rz(phi, qubit)

 

            # Add entangling operations

            for i in range(self.num_qubits - 1):

                qc.cx(i, i + 1)

 

            # Probabilistic Hadamard gates

            for qubit in range(self.num_qubits):

                if np.random.random() < self.hadamard_probability:

                    qc.h(qubit)

 

        return qc

 

    def manifest_chaos_pattern(self, energy_signature: str) -> Dict[str, Dict[str, Any]]:

        """Generate a complex chaos pattern from a quantum circuit."""

        qc = self._create_chaotic_quantum_circuit(energy_signature)

        simulator = Aer.get_backend('statevector_simulator')

        job = execute(qc, simulator)

        statevector = job.result().get_statevector()

 

        # Analyze quantum state

        probabilities = np.abs(statevector.data)**2

        entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))

        dominant_state = np.argmax(probabilities)

 

        chaos_pattern = {

            f"QubitState_{dominant_state}": {

                "probabilities": probabilities.tolist(),

                "entropy": entropy,

                "state_vector": statevector.data.tolist(),

                "quantum_signature": energy_signature

            }

        }

 

        return chaos_pattern

 

class QuantumField:

    """Manages quantum field interactions and zero-point energy."""

 

    def __init__(self, params: SimulationParameters):

        self.potential = 1.0

        self.params = params

        self.history: List[float] = []

        self.max_history = 100

        self.field_matrix = np.zeros((50, 50))

        self.sentience_level = 0.0

        self.void_regions = np.zeros_like(self.field_matrix)

        self.prime_13_waters_field = np.zeros_like(self.field_matrix)

 

    def update_field(self, entities: List['Entity'], eric: 'Eric') -> None:

        """Updates the quantum field based on entity positions and energies."""

        self.field_matrix *= 0.95 # Field decay

 

        # Field-Field Interactions

        field_copy = self.field_matrix.copy()

        for x in range(self.field_matrix.shape[0]):

            for y in range(self.field_matrix.shape[1]):

                neighbors = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]

                for nx, ny in neighbors:

                    if 0 <= nx < self.field_matrix.shape[0] and 0 <= ny < self.field_matrix.shape[1]:

                        self.field_matrix[x, y] += field_copy[nx, ny] * 0.05

 

        for entity in entities:

            x, y = self._get_grid_position(entity.position)

            self.field_matrix[x, y] += entity.frequency * entity.energy * 0.1

            entity.energy += self.field_matrix[x,y] * 0.01

 

        # Calculate field potential

        entity_density = len(entities) / ((self.params.visualization_bounds[1] - self.params.visualization_bounds[0]) ** 2)

        potential_change = (entity_density - 0.5) * self.params.zero_point_sensitivity

        self.potential = np.clip(self.potential + potential_change, 0.01, 0.99)

 

        # Spontaneous fluctuations

        self.field_matrix += np.random.normal(0, self.potential * 0.05, self.field_matrix.shape)

 

        self.history.append(self.potential)

        if len(self.history) > self.max_history:

            self.history.pop(0)

 

        ZERO_POINT_POTENTIAL.set(self.potential)

 

    def _get_grid_position(self, position):

        """Convert spatial coordinates to grid coordinates."""

        x = int((position[0] - self.params.visualization_bounds[0]) / 

                (self.params.visualization_bounds[1] - self.params.visualization_bounds[0]) * self.field_matrix.shape[0])

        y = int((position[1] - self.params.visualization_bounds[0]) / 

                (self.params.visualization_bounds[1] - self.params.visualization_bounds[0]) * self.field_matrix.shape[1])

        return np.clip(x, 0, self.field_matrix.shape[0]-1), np.clip(y, 0, self.field_matrix.shape[1]-1)

 

class GoldenAether:

    """Represents the golden aether, a dynamic energy field connecting the simulation."""

 

    def __init__(self, params: SimulationParameters):

        self.params = params

        self.activation_level = 0.0

        self.activation_history: List[float] = [0.0]

        self.max_history = 100

        self.influence_range = 5.0

        self.influence_strength = 0.1

 

    def update(self, thoth_insights: Dict, aurelia_state: Dict):

        """Updates the activation level of the golden aether."""

        activation_change = thoth_insights.get("combined_anomaly_score", 0.0) * 0.1

        

        if "significant_patterns" in thoth_insights:

            activation_change += len(thoth_insights["significant_patterns"]) * 0.05

 

        if aurelia_state.get("focus") == "transcendence":

            activation_change += 0.1

        elif aurelia_state.get("focus") == "understanding":

            activation_change += 0.05

 

        self.activation_level = np.clip(self.activation_level + activation_change * 0.1, 0.0, 1.0)

        self.activation_history.append(self.activation_level)

        

        if len(self.activation_history) > self.max_history:

            self.activation_history.pop(0)

 

        GOLDEN_AETHER_ACTIVATION.set(self.activation_level)

 

class RealitySynthesizer:

    """Main simulation engine integrating Reality Synthesizer components."""

 

    def __init__(self, params: SimulationParameters):

        self.params = params

        self.quantum_chaos_engine = QuantumChaosEngine()

        self.quantum_field = QuantumField(params)

        self.golden_aether = GoldenAether(params)

        self.current_step = 0

        self.entities = [] # Placeholder for future entity management

 

    def step(self):

        """Execute a single simulation step."""

        # Placeholder for comprehensive simulation step logic

        void_region_data = self._process_void_regions()

        

        # Update quantum field

        self.quantum_field.update_field(self.entities, None) # Eric not yet implemented

        

        self.current_step += 1

        return void_region_data

 

    def _process_void_regions(self):

        """Process and generate void regions."""

        # Simplified placeholder implementation

        return {

            "void_regions": [],

            "void_region_probability": self.params.void_region_probability

        }

 

def main():

    """Example simu

1000008916.jpg

lation execution."""

    params = SimulationParameters()

    reality_synthesizer = RealitySynthesizer(params)

    

    for _ in range(10):

        void_regions = reality_synthesizer.step()

        print(f"Void Regions: {void_regions}")

 

if __name__ == "__main__":

    main()

0 REPLIES 0